Hollickwood School Calculation Policy - Upper Key Stage 2

This document aims to demonstrate the methods used to teach different forms of calculation across Church Hill Primary School. It is structured by year group in order to clearly show progression for each operation and to aid a smooth transition from one year group to the next. The policy provides calculation guidance and expectations for each step taught, clearly emphasising the importance of using concrete resources initially to develop mathematical understanding. This use of manipulatives helps reinforce understanding and provides support when calculating mentally, mentally with jottings, using expanded methods and formal written methods.

Children should progress between the stages working towards formal written methods (where appropriate), once they have mastered each stage. However, they should not be hurried and, after the method has been taught, children should still be able to make their preferred choice of the most appropriate, efficient and accurate method for them. Previous stages may need to be revisited to consolidate understanding when introducing a new strategy. As new methods of calculations are introduced, children should have the opportunity to examine them, alongside the method they have consolidated, to make connections between the methods and establish the similarities and differences between them.

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.
Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage.

Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.

Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2-digit numbers.

Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000 .

Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.

Multiplication and division of decimals are also introduced and refined.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.

Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.
Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: $50 \%, 25 \%, 10 \%$ and 1%.

Year 5			
	Concrete	Pictorial	Abstract

Column addition with whole numbers	Use place value equipment to represent additions. Add a row of counters onto the place value grid to show $15,735+4,012$.	Represent additions, using place value equipment on a place value grid alongside written methods. I need to exchange 10 tens for a 100.	Use column addition, including exchanges.
Representing additions	Using concrete equipment (base 10) to represent additions of two or more numbers. $101+24$	Bar models represent addition of two or more numbers in the context of problem solving.	Use approximation to check whether answers are reasonable. I will use $23,000+8,000$ to check.

Year 5

Subtraction

Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. $2,250-1,070$	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.$15,735-2,582=13,153$TTh Th H T O 00000 $000 \varnothing$$\qquad$ Now subtract the 10 s. Exchange I hundred for 10 tens. Subtract the $100 \mathrm{~s}, 1,000 \mathrm{~s}$ and 10,000 s.	Use column subtraction methods with exchange where required. $62,097-18,534=43,563$
Checking strategies and representing subtractions		Bar models represent subtractions in problem contexts, including 'find the difference'.	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations. I calculated 18,000 $+4,000$ mentally to check my subtraction.
Choosing efficient methods		Using bar models as an efficient method to help children visualise subtraction problems.	To subtract two large numbers that are close, children find the difference by counting on. 2,002-1,995 = ?

HOLLICKWOOD

		McMiggle buys a new jar of magic power for $£ 4.57$ and a new wizard's toad for double the price. If he pays with $£ 20$, does he have enough change to buy another toad?\qquad			Use addition to check subtractions. I calculated 7,546-2,355 = 5,191. I will check using the inverse.		

Year 5
 Multiplication

Understandin g factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and nonexamples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$ 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10,100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10 . \square	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000. $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$

Multiplying up to 4-digit numbers by a single digit	Explore how to use partitioning to multiply efficiently.$8 \times 17=?$	Represent multiplications using place value equipment and add the 1 s , then 10 s , then 100s, then 1,000 s.			Use an area model and then add the parts. \qquad 100 60 3		
		H	T	0	$5 \quad 100 \times 5=500$	$60 \times 5=300$	$3 \times 5=15$
	0000000 0000000 0000000 0000000 0000000 0000000 000000	(10)	(10)(10)(10)(10)(10) (10)	(1)(1)			
			\|(10)(10)(10) (10)	(1)(1)	Use a column multiplication, including any required exchanges.		
			(10)(10)(10)(1)(10) (10)	(1)(1)	136		
		®	(10)(10)(10(10)(10) (10)	(1)(1)	$\begin{array}{ll} \times & 6 \\ \hline 8 \quad 1 \quad 6 \end{array}$		
	$80+56=136$		(10)(10)(10)(10)	(1)(1)	$\begin{array}{l\|l} 8 & 6 \\ \hline 23 \end{array}$		
	So, $8 \times 17=136$						

			$1,274 \times 32=?$ First multiply 1,274 by 2. $\begin{array}{r} 1274 \\ \times \quad 32 \\ \times \quad 1,274 \times 2 \end{array}$ \qquad Then multiply 1,274 by 30. Finally, find the total.

Multiplying
decimals by
10,100 and
1,000

Use place value equipment to explore and understand the exchange of 10 tenths， 10 hundredths or 10 thousandths．

Represent multiplication by 10 as exchange on a place value grid．

Understand how this exchange is represented on a place value chart．

	Th	H	T	0	－	Tth
				2		5
$2.5 \times 10=25$			2	5	－	
$2 \cdot 5 \times 100=250$		2	5	0	－	
$2.5 \times 1,000=2,500$	2	5	0	0	－	

Year 5 Division

Understandin

factors and

prime

 numbersUse equipment to explore the factors of a given number

－०००००००
 〇ロ०००००

$24 \div 3=8$
$24 \div 8=3$
8 and 3 are factors of 24 because they divide 24 exactly．
$24 \div 5=4$ remainder 4 ．

－ロロッ○
 0000

5 is not a factor of 24 because there is a remainder．

Understand that prime numbers are numbers with exactly two factors．
$13 \div 1=13$
$13 \div 2=6 r$
$13 \div 4=4 r 1$

1 and 13 are the only factors of 13.
13 is a prime number．

Can demonstrate this by using factor bugs．

Each leg（or tail）is a factor of the bug＇s number（12）．

Understand how to recognise prime and composite numbers．

I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder

I know that 33 is not a prime number as it can be divided by 1，3， 11 and 33.

I know that 1 is not a prime number，as it has only 1 factor．

Understandin
g inverse
operations
and the link
with
multiplication,
grouping and
sharing

I have 28 in total. I shared them equally into 7 groups. There are 4 in each group.

I have 28 in total. I made groups of 4. There are 7 equal groups.

Represent multiplicative relationships and explore the families of division facts.

$0000<0000<0000<000000$

$60 \div 4=15$
$60 \div 15=4$

Represent the different multiplicative relationships to solve problems requiring inverse operations.
$12 \div$
$12 \div$
$\square$$\times 3=12$$\div 3=12$$\times 3$

Understand missing number problems for division calculations and know how to solve them using inverse operations.
$22 \div ?=222$
$\div 2=$?
$? \div 2=22$
$? \div 22=2$

Understand how and why the digits change on a place value grid when dividing by 10 , 100 or 1,000 .

Th	H	T	O
3	2	0	0

$3,200 \div 100=$?
3,200 is 3 thousands and 2 hundreds.
$200 \div 100=2$
$3,000 \div 100=30$
$3,200 \div 100=32$
So, the digits will move two places to the right.

Dividing by multiples of 10, 100 and 1,000	Use place value equipment to represent known facts and unitising. 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	Represent related facts with place value equipment when dividing by unitising. 180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$ $\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$

		12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	

Year 6

Concrete

Pictorial

Abstract

Year 6 Addition

Comparing and Represent 7-digit numbers on a place value selecting efficient methods
grid, and use this to support thinking and mental methods.

Discuss similarities and differences between methods, and choose efficient methods based on the specific calculation. Compare written and mental methods alongside place value representations.

TTh Th H T O				
4	0	2	6	$\begin{array}{r}3522 \\ \hline\end{array}$

\qquad

Use bar model and number line
representations to model addition in problemsolving and measure contexts.

H	T	O - Tth Hth		
I	4	0		q
+	4	q	. 8	q
I	8	q	- 9	8

Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,411,301+500,000=?$ This would be 5 more counters in the HTh place. So, the total is 2,911,301. $2,411,301+500,000=2,911,301$	Use a bar model to support thinking in addition problems. $257,000+99,000=?$ I added 100 thousands then subtracted 1 thousand. 257 thousands + 100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$
Understandin g order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results. $3 \times 5-2=$?	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$

Year 6
 Subtraction

Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. 4 groups of 2,345 This is a multiplication: $\begin{aligned} & 4 \times 2,345 \\ & 2,345 \times 4 \end{aligned}$	Use place value equipment to compare methods.	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications. Method 3 Method 4

Multiplying up
 to a 4-digit number by a 2-digit number

Using knowledge of factors and partitions to compare methods for multiplication s	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately. Represent and compare methods using a bar model.	Use a known fact to generate families of related facts. Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$					
Multiplying by 10, 100 and 1,000	Use place value equipment to explore exchange in decimal multiplication. Represent 0.3. Multiply by 10. Exchange each group of ten tenths. $0.3 \times 10=?$ 0.3 is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	Understand how the exchange affects decimal numbers on a place value grid. $0.3 \times 10=3$	Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10 , 100 and 1,000 . $\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ & =2,400 \\ 2.5 \times 10 & =25 \\ 2.5 \times 20 & =2.5 \times 10 \times 2 \\ & =50 \end{aligned}$					
:---	:---	:---	:---					

Year 6 Division			
Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts. Physically use the children to model this idea. $4 \times 6=24$ 24 is 6 groups of 4 . 24 is 4 groups of 6 . 24 divided by 6 is 4.24 divided by 4 is 6 .	Represent divisions using an array. 0000000 0000000 $28 \div 7=4$	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \\ & 5=35 \div 7 \end{aligned}$
Understandin g factors	Use equipment to explore different factors of a number. $24 \div 4=6$ $30 \div 4=7$ remainder 2 4 is a factor of 24 but is not a factor of 30 .	Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recognise and know primes up to 100. Understand that 2 is the only even prime, and that 1 is not a prime number.

Dividing by 10, 100 and 1,000	Use place value equipment to explore division as exchange. Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10,100 and 1,000 on the digits on a place value grid. Understand how to divide using division by 10, 100 and 1,000. $12 \div 20=?$ \square \square ? $1.2 \div 2=0.6$	Use knowledge of factors to divide by multiples of 10, 100 and 1,000 . So, $40 \div 50=0.8$
Dividing decimals	Use place value equipment to explore division of decimals. 8 tenths divided into 4 groups. 2 tenths in each group.	Use a bar model to represent divisions. $4 \times 2=8$ $8 \div 4=2$ So, $4 \times 0.2=0.8$ $0.8 \div 4=0.2$	Use short division to divide decimals with up to 2 decimal places.

