Hollickwood School Calculation Policy - Lower Key Stage 2

This document aims to demonstrate the methods used to teach different forms of calculation across the CHBP federation. It is structured by year group in order to clearly show progression for each operation and to aid a smooth transition from one year group to the next. The policy provides calculation guidance and expectations for each step taught, clearly emphasising the importance of using concrete resources initially to develop mathematical understanding. This use of manipulatives helps reinforce understanding and provides support when calculating mentally, mentally with jottings, using expanded methods and formal written methods.

Children should progress between the stages working towards formal written methods (where appropriate), once they have mastered each stage. However, they should not be hurried and, after the method has been taught, children should still be able to make their preferred choice of the most appropriate, efficient and accurate method for them. Previous stages may need to be revisited to consolidate understanding when introducing a new strategy. As new methods of calculations are introduced, children should have the opportunity to examine them, alongside the method they have consolidated, to make connections between the methods and establish the similarities and differences between them.

Lower Key Stage 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.
Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

Addition and subtraction: In Year 3 especially, the column methods are built up gradually. Children will develop their understanding of how each stage of the calculation, including any exchanges, relates to place value. The example calculations chosen to introduce the stages of each method may often be more suited to a mental method. However, the examples and the progression of the steps have been chosen to help children develop their fluency in the process, alongside a deep understanding of the concepts and the numbers involved, so that they can apply these skills accurately and efficiently to later calculations. The class should be encouraged to compare mental and written methods for specific calculations, and children should be encouraged at every stage to make choices about which methods to apply.

In Year 4, the steps are shown without such fine detail, although children should continue to build their understanding with a secure basis in place value. In subtraction, children will need to develop their understanding of exchange as they may need to exchange across one or two columns.

By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Multiplication and division: Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem. As such, they should be as confident knowing that 35 divided by 7 is 5 as knowing that 5 times 7 is 35 .

Children develop key skills to support multiplication methods: unitising, commutativity, and how to use partitioning effectively.

Unitising allows children to use known facts to multiply and divide multiples of 10 and 100 efficiently. Commutativity gives children flexibility in applying known facts to calculations and problem solving. An understanding of partitioning allows children to extend their skills to multiplying and dividing 2 - and 3 -digit numbers by a single digit.

Children develop column methods to support multiplications in these cases.

For successful division, children will need to make choices about how to partition. For example, to divide 423 by 3 , it is effective to partition 423 into 300,120 and 3 , as these can be divided by 3 using known facts.

Children will also need to understand the concept of remainder, in terms of a given calculation and in terms of the context of the problem.

Fractions: Children develop the key concept of equivalent fractions, and link this with multiplying and dividing the numerators and denominators, as well as exploring the visual concept through fractions of shapes. Children learn how to find a fraction of an amount, and develop this with the aid of a bar model and other representations alongside.

In Year 3, children develop an understanding of how to add and subtract fractions with the same denominator and find complements to the whole. This is developed alongside an understanding of fractions as numbers, including fractions greater than 1. In Year 4, children begin to work with fractions greater than 1.

Decimals are introduced, as tenths in Year 3 and then as hundredths in Year 4. Children develop an understanding of decimals in terms of the relationship with fractions, with dividing by 10 and 100 , and also with place value.

Year 3

Understandin
g place value

to $\mathbf{1 , 0 0 0}$ | Unitise 100s, 10s and 1s to build 3-digit |
| :--- |
| numbers using base 10 and other |
| equipment. |

Adding 100s	Use known facts and unitising to add multiples of 100. $3+2=5$ 3 hundreds +2 hundreds $=5$ hundreds $300+200=500$ Using objects to represent 100s.	Use known facts and unitising to add multiples of 100. Drawing pictorial representations whilst also using concrete resources alongside. $3+4=7$ 3 hundreds +4 hundreds $=7$ hundreds $300+400=700$	Use known facts and unitising to add multiples of 100 . Represent the addition on a number line. Use a part-whole model to support unitising. $\begin{aligned} & 3+2=5 \\ & 300+200=500 \end{aligned}$
3-digit number +1 s , no exchange or bridging	Use number bonds to add the 1s. 10 LOLLIES $214+4=?$ Now there are $4+4$ ones in total. $\begin{aligned} & 4+4=8 \\ & 214+4=218 \end{aligned}$	Use number bonds to add the 1 s . Using place value charts to clearly define hundreds, tens and ones. Use number bonds to add the Is. $5+4=9$ $\begin{aligned} & 245+4 \\ & 5+4=9 \end{aligned}$ $245+4=249$	Understand the link with counting on. $245+4$ Use number bonds to add the 1 s and understand that this is more efficient and less prone to error. $245+4=?$ I will add the 1s. 5 $+4=9$

			So, 245 + 4 = 249

3-digit number Use place value equipment to make and + 2digit number

Use a place value grid to organise thinking and adding of 1 s , then 10 s .

Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.

| Subtracting |
| :--- | :--- | :--- | :--- |
| 100s | \left\lvert\, | Use known facts and unitising to subtract |
| :--- |
| multiples of 100 . | | Use known facts and unitising to subtract |
| :--- |
| multiples of 100. | | Understand the link with counting back in |
| :--- |
| 100 s. |\right.

3-digit number - 1s, exchange or bridging required	Understand why an exchange is necessary by exploring why 1 ten must be exchanged. Use place value equipment.	Represent the required exchange on a place value grid.$151-6=?$			Calculate mentally by using known bonds. $151-6=?$
		H	T	0	
				0	
		H	T	0	
			眐睈		

3-digit number $-\mathbf{1 0 s}$, no exchange	Subtract the 10 s using known bonds.
$381-10=?$	
8 tens with 1 removed is 7 tens.	
$381-10=371$	

Subtract the 10s using known bonds.

8 tens -1 ten $=7$ tens
$381-10=371$

Use known bonds to subtract the 10 s mentally.
$372-50=$?
$70-50=20$
So, $372-50=322$

Understandin g equal grouping and repeated addition	Children continue to build understanding of equal groups and the relationship with repeated addition. They recognise both examples and nonexamples using objects.	Children recognise that arrays demonstrate commutativity.	Children understand the link between repeated addition and multiplication.
	This is 3 groups of 4.		
This is 4 groups of 3.			

A bar model may represent multiplications as equal groups.

$6 \times 4=24$

Using commutativity to support understanding of the timestables	Understand how to use times-tables facts flexibly. \square 41) (11) There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. I can use $6 \times 4=24$ to work out both totals.	Understand how times-table facts relate to commutativity. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \end{aligned}$	Understand how times-table facts relate to commutativity. I need to work out 4 groups of 7 . I know that $7 \times 4=28$ so, I know that 4 groups of $7=28$ and 7 groups of $4=28$.

Understandin \mathbf{g} and using $\times \mathbf{3}, \times \mathbf{2 , \times 4} \times \mathbf{a n d}$ $\times \mathbf{8}$ tables.	Children learn the times-tables as 'groups of' , but apply their knowledge of commutativity.	Children understand how the $\times 2, \times 4$ and $\times 8$ tables are related through repeated doubling.	Children understand the relationship between related multiplication and division facts in known times-tables.
	I can use the $\times 3$ table to work out how many keys. I can also use the $\times 3$ table to work out how many batteries.		

车

Multiplying a 2-digit number by a 1-digit number, expanded column method	Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications. $\begin{aligned} & 3 \times 24=? \\ & 3 \times 20=60 \\ & 3 \times 4=12 \end{aligned}$ $\begin{aligned} & 3 \times 24=60+12 \\ & 3 \times 24=70+2 \\ & 3 \times 24=72 \end{aligned}$	Understand that multiplications may require an exchange of 1 s for 10 s , and also 10 s for 100s. $4 \times 23=?$ (101TM $4 \times 23=92$ $\begin{aligned} 5 \times 23 & =? \\ 5 \times 3 & =15 \\ 5 \times 20 & =100 \\ 5 \times 23 & =115 \end{aligned}$	Children may write calculations in expanded column form, but must understand the link with place value and exchange. Children are encouraged to write the expanded parts of the calculation separately.

事

| Using
 timestables
 knowledge to
 divide |
| :--- | :--- | :--- |
| calculate divisions. |
| 24 divided into groups of 8. |

Understandin g remainders	Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further. $\\|\\|\\|\\|\\|\\|\\|\\|\\| \square \square$ There are 13 sticks in total. There are 3 groups of 4 , with 1 remainder.	Use images to explain remainders. $22 \div 5=4$ remainder 2	Understand that the remainder is what cannot be shared equally from a set. $22 \div 5=?$ $3 \times 5=154$ $\times 5=20$ $5 \times 5=25 \cdots$ this is larger than 22 So, $22 \div 5=4$ remainder 2
Using known facts to divide multiples of 10	Use place value equipment to understand how to divide by unitising. Make 6 ones divided by 3. Now make 6 tens divided by 3 . What is the same? What is different?	Divide multiples of 10 by unitising. 12 tens shared into 3 equal groups. 4 tens in each group.	Divide multiples of 10 by a single digit using known times-tables. $180 \div 3=?$ 180 is 18 tens. 18 divided by 3 is 6 . 18 tens divided by 3 is 6 tens. $\begin{aligned} & 18 \div 3=6 \\ & 180 \div 3=60 \end{aligned}$

2－digit number divided by 1 － digit number， no remainders	Children explore dividing 2－digit numbers by using place value equipment． \square णाणाण 川1010 $48 \div 2=?$	Children explore which partitions support particular divisions． I need to partition 42 differently to divide by 3.	Children partition a number into 10 s and 1 s to divide where appropriate． $\begin{gathered} 60 \div 2=30 \\ 8 \div 2=4 \\ 30+4=3468 \\ \div 2=34 \end{gathered}$
	First divide the 10s． Then divide the 1s． ロロロ日	$42=30+12$ $42 \div 3=14$	Children partition flexibly to divide where appropriate． $\begin{aligned} & 42 \div 3=? \\ & 42=40+2 \end{aligned}$ I need to partition 42 differently to divide by 3 ． $42=30+12$ $\begin{aligned} & 30 \div 3=10 \\ & 12 \div 3=4 \end{aligned}$ $\begin{aligned} & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$

2-digit number divided by 1 digit number, with remainders	Use place value equipment to understand the concept of remainder. Make 29 from place value equipment. Share it into 2 equal groups. There are two groups of 14 and 1 remainder.	Use place value equipment to understand the concept of remainder in division. $29 \div 2=?$ $29 \div 2=14 \text { remainder } 1$	Partition to divide, understanding the remainder in context. 67 children try to make 5 equal lines. $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \\ & 17 \div 5=3 \text { remainder } 2 \\ & 67 \div 5=13 \text { remainder } 2 \end{aligned}$ There are 13 children in each line and 2 children left out.

	Year 4		
	Concrete	Pictorial	Abstract
Year 4 Addition			

Understanding numbers to 10,000	Use place value equipment to understand the place value of 4-digit numbers. 4 thousands equal 4,000. 1 thousand is 10 hundreds.	Represent numbers using place value counters once children understand the relationship between 1,000 s and 100 s. $2,000+500+40+2=2,542$	Understand partitioning of 4-digit numbers, including numbers with digits of 0. $5,000+60+8=5,068$ Understand and read 4-digit numbers on a number line.
Choosing mental methods where appropriate	Use unitising and known facts to support mental calculations. Make 1,405 from place value equipment. Add 2,000. Now add the 1,000s. 1 thousand +2 thousands $=3$ thousands $1,405+2,000=3,405$	Use unitising and known facts to support mental calculations. I can add the 100 s mentally. $200+300=500$ So, $4,256+300=4,556$	Use unitising and known facts to support mental calculations. $\begin{aligned} & 4,256+300=? \\ & 2+3=5 \quad 200+300=500 \\ & 4,256+300=4,556 \end{aligned}$

事

Choosing mental methods where appropriate	Use place value equipment to justify mental methods. What number will be left if we take away 300 ?	Use place value grids to support mental methods where appropriate.				Use knowledge of place value and unitising to subtract mentally where appropriate.
		Th	H	T	0	
				QQQQ	1	3,501-2,000
		$7,646-40=7,606$				3 thousands -2 thousands $=1$ thousand $3,501-2,000=1,501$

Column subtraction with exchange

Understand why exchange of a 1,000 for 100s, a 100 for 10s, or a 10 for 1s may be necessary.

Represent place value equipment on a place value grid to subtract, including exchanges where needed.

Use column subtraction, with understanding of the place value of any exchange required.

Th H	T	0
2	5	0
4	2	0
	3	0
Th H	T	0
$\chi^{\prime} 2$	5	0
4	2	0
8	3	0

Th	H	T	O
\boldsymbol{X}	2	5	0
	4	2	0
	8	3	0

Year 4
 Multiplication

Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100 . 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100 . $3 \times 4=12$ $3 \times 40=120$ $3 \times 400=1,200$	Use known facts and understanding of place value and commutativity to multiply mentally. $4 \times 7=28$ $\begin{aligned} & 4 \times 70=280 \\ & 40 \times 7=280 \end{aligned}$ $\begin{aligned} & 4 \times 700=2,800 \\ & 400 \times 7=2,800 \end{aligned}$
Understanding times-tables up to $\mathbf{1 2 \times 1 2}$	Understand the special cases of multiplying by 1 and 0 . $5 \times 1=5$ $5 \times 0=0$	Represent the relationship between the $\times 9$ table and the $\times 10$ table. Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \\ & \times 11=4 \\ & 4 \times 12=40+8 \end{aligned}$	Understand how times-tables relate to counting patterns. Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table I know that $7 \times 5=35$ so I know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ $\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$

Understanding and using partitioning in multiplication	Make multiplications by partitioning. 4×12 is 4 groups of 10 and 4 groups of 2 . $4 \times 12=40+8$	Understand how multiplication and partitioning are related through addition. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 5=20 \\ & 12+20=32 \end{aligned}$ $4 \times 8=32$

```
Use partitioning to multiply 2-digit
numbers by a single digit.
18\times6=?
```

$18 \times 6=?$

Column multiplication for 2- and 3-digit numbers multiplied by a single digit	Use place value equipment to make multiplications.
	Make 4×136 using equipment.
	I can work out how many 1s, 10s and 100s.
	There are 4×6 ones $\cdots \quad 24$ ones
	There are 4×3 tens $\cdots \quad 12$ tens
	There are 4×1 hundreds $\cdots 4$ hundreds
	$24+120+400=544$

Use place value equipment alongside a column method for multiplication of up to 3-digit numbers by a single digit.

Use the formal column method for up to 3-digit numbers multiplied by a single digit.
3 1 2
\qquad
\times

Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.

23

Multiplying more than two numbers	Represent situations by multiplying three numbers together. Each sheet has 2×5 stickers. There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total. $\begin{aligned} & \underbrace{5 \times 2}_{10} \times 3=30 \\ & 10 \times 30 \end{aligned}$	Understand that commutativity can be used to multiply in different orders.	Use knowledge of factors to simplify some multiplications. $\begin{aligned} & 24 \times 5=12 \times 2 \times 5 \\ & 12 \times \underbrace{2 \times 5}_{12 \times 5}= \\ & =120 \end{aligned}$ So, $24 \times 5=120$
Year 4 Division			

Understanding the relationship between multiplication and division, including timestables
Use objects to explore families of
multiplication and division facts.
$4 \times 6=24$
24 is 6 groups of 4 .
24 is 4 groups of 6 .
$28 \div 7=4$

24 divided by 6 is 4.24
divided by 4 is 6 .

Understand families of related multiplication and division facts.

I know that $5 \times 7=35$
so I know all these facts:
$5 \times 7=35$
$7 \times 5=35$
$35=5 \times 7$
$35=7 \times 5$
$35 \div 5=7$
$35 \div 7=5$
$7=35 \div 5$
$5=35 \div 7$

Dividing 2-digit and 3-digit numbers by a single digit by partitioning into 100s, 10s and 1s	Partition into 10s and 1s to divide where appropriate. $39 \div 3=?$ $\begin{aligned} & 39=30+9 \\ & 30 \div 3=10 \quad 9 \\ & \div 3=3 \\ & 39 \div 3=13 \end{aligned}$	Partition into $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1s using Base 10 equipment to divide where appropriate. $39 \div 3=?$ 3 groups of I ten $\begin{aligned} & 30 \div 3=109 \\ & \div 3=3 \\ & 39 \div 3=13 \end{aligned}$	Partition into 100 s , 10s and 1s using a partwhole model to divide where appropriate. $142 \div 2=?$ $\begin{gathered} 100 \div 2=5040 \\ \div 2=20 \\ 6 \div 2=3 \\ 50+20+3=73 \\ 142 \div 2=73 \end{gathered}$

Dividing 2-digit and 3-digit numbers by a single digit, using flexible partitioning	Use place value equipment to explore why different partitions are needed. $42 \div 3=?$ I will split it into 30 and 12 , so that I can divide by 3 more easily.	Represent how to partition flexibly where needed. $84 \div 7=?$ I will partition into 70 and 14 because I am dividing by 7 .	Make decisions about appropriate partitioning based on the division required. Understand that different partitions can be used to complete the same division.
Understanding remainders	Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24, and 1 that cannot be shared. G \square \square \square \square 	Represent the remainder as the part that cannot be shared equally. $72 \div 5=14$ remainder 2	Understand how partitioning can reveal remainders of divisions. $\begin{aligned} & 80 \div 4=20 \\ & 12 \div 4=3 \\ & 95 \div 4=23 \text { remainder } 3 \end{aligned}$

